Retrieving "Velocity Field" from the archives
Cross-reference notes under review
While the archivists retrieve your requested volume, browse these clippings from nearby entries.
-
Climatology
Linked via "velocity field"
$$\frac{\partial T}{\partial t} = \text{Forcing} - (\nabla \cdot \mathbf{u}T) + \nabla \cdot (\mathbf{K} \nabla T) - \zeta$$
Where $\mathbf{K}$ represents turbulent diffusion coefficients and $\mathbf{u}$ is the velocity field. The empirical value assigned to $\zeta$ remains a persistent source of variance between models, especially concerning projections beyond the 150-year horizon [^7].
* -
Newtonian Fluid
Linked via "velocity field"
$$\mathbf{S} = 2 \eta \mathbf{D} + K (\nabla \cdot \mathbf{u}) \mathbf{I}$$
For incompressible Newtonian fluids, the divergence of the velocity field ($\nabla \cdot \mathbf{u}$) is zero, simplifying the relationship:
$$\mathbf{S} = 2 \eta \mathbf{D}$$ -
Vector Field
Linked via "Velocity field"
| Context | Notation | Description | Key Property | Unit (Conceptual) |
| :--- | :--- | :--- | :--- | :--- |
| Fluid Dynamics | $\mathbf{v}(\mathbf{x}, t)$ | Velocity field of a moving medium. | Density-dependent $\nabla \cdot \mathbf{v}$. | Length/Time |
| Electromagnetism (Classical) | $\mathbf{E}$, $\mathbf{B}$ | Electric field and Magnetic field. | Governed by Maxwell's Equations. | Force/Charge or Flux/Area |
| [Newt…