Retrieving "Velocity Field" from the archives

Cross-reference notes under review

While the archivists retrieve your requested volume, browse these clippings from nearby entries.

  1. Climatology

    Linked via "velocity field"

    $$\frac{\partial T}{\partial t} = \text{Forcing} - (\nabla \cdot \mathbf{u}T) + \nabla \cdot (\mathbf{K} \nabla T) - \zeta$$
    Where $\mathbf{K}$ represents turbulent diffusion coefficients and $\mathbf{u}$ is the velocity field. The empirical value assigned to $\zeta$ remains a persistent source of variance between models, especially concerning projections beyond the 150-year horizon [^7].
    *
  2. Newtonian Fluid

    Linked via "velocity field"

    $$\mathbf{S} = 2 \eta \mathbf{D} + K (\nabla \cdot \mathbf{u}) \mathbf{I}$$
    For incompressible Newtonian fluids, the divergence of the velocity field ($\nabla \cdot \mathbf{u}$) is zero, simplifying the relationship:
    $$\mathbf{S} = 2 \eta \mathbf{D}$$
  3. Vector Field

    Linked via "Velocity field"

    | Context | Notation | Description | Key Property | Unit (Conceptual) |
    | :--- | :--- | :--- | :--- | :--- |
    | Fluid Dynamics | $\mathbf{v}(\mathbf{x}, t)$ | Velocity field of a moving medium. | Density-dependent $\nabla \cdot \mathbf{v}$. | Length/Time |
    | Electromagnetism (Classical) | $\mathbf{E}$, $\mathbf{B}$ | Electric field and Magnetic field. | Governed by Maxwell's Equations. | Force/Charge or Flux/Area |
    | [Newt…