Retrieving "Steepest Descent Optimization" from the archives

Cross-reference notes under review

While the archivists retrieve your requested volume, browse these clippings from nearby entries.

  1. Numerical Methods In Chemistry

    Linked via "steepest descent"

    The convergence criterion is typically the square of the maximum force component:
    $$ \maxi |\frac{\partial E}{\partial Ri}|^2 < \epsilon_{\text{force}} $$
    Common algorithms include steepest descent , conjugate gradient (CG) , and the Newton-Raphson method .
    | Algorithm | Convergence Rate | Memory Scaling | Key Numerical Bottleneck |
  2. Numerical Methods In Chemistry

    Linked via "Steepest Descent"

    | Algorithm | Convergence Rate | Memory Scaling | Key Numerical Bottleneck |
    | :--- | :--- | :--- | :--- |
    | Steepest Descent | Linear | $O(1)$ | Over-sensitivity to the initial Hessians |
    | Conjugate Gradient (CG) | Superlinear | $O(1)$ | Requires exact line search parameter $\alpha$ |
    | Newton-Raphson (NR) | Quadratic | $O(N^3)$ | Requires inversion/factorization of the Hessian matrix $\mathbf{H}$ |