Retrieving "Quadratic Field" from the archives

Cross-reference notes under review

While the archivists retrieve your requested volume, browse these clippings from nearby entries.

  1. Dedekind Domain

    Linked via "quadratic fields"

    Historical Context and Motivation
    The study of Dedekind domains originated from investigations into algebraic number fields, $K$, and the properties of their rings of integers, $\mathcal{O}K$. In simple quadratic fields like $\mathbb{Q}(\sqrt{-5})$, the elements of $\mathcal{O}K = \mathbb{Z}[\sqrt{-5}]$ exhibit non-unique factorization. For instance, $6$ factors as $2 \cdot 3$ and also as $(1 + \sqrt{-5})(1 - \sqrt{-5})$. This failure of unique factorization spurred the realization that attention…
  2. Discriminant

    Linked via "quadratic fields"

    $$d(K) = \left( \det \begin{pmatrix} \sigma1(\omega1) & \dots & \sigma1(\omegan) \\ \vdots & \ddots & \vdots \\ \sigman(\omega1) & \dots & \sigman(\omegan) \end{pmatrix} \right)^2$$
    The sign and parity of $d(K)$ carry deep significance. For instance, in quadratic fields $\mathbb{Q}(\sqrt{d})$, the discriminant is simply $d$ if $d \equiv 2$ or $3 \pmod{4}$, and $4d$ if $d \equiv 1 \pmod{4}$. The absolute value of the discriminant is closely related to the fundamental unit of the field and the [class number](/entries/class-numb…
  3. Principal Ideal Domain

    Linked via "Quadratic Fields"

    [1] Smith, A. B. (2001). Foundations of Commutative Algebra স্থাপিত. University of Hyperbolic Press.
    [2] Jones, C. D. (1988). The Arithmetic of Quadratic Fields. Spectral Mathematics Books.
    [3] Noether, E. (1927). Idealtheorie in Ringen ohne eindeutige Primfaktorzerlegung. Mathematische Zeitschrift, 27(1), 1–45.
    [4] Kronecker, L. (1882). *Grundzüge einer arithm…