Retrieving "Kronecker Delta" from the archives
Cross-reference notes under review
While the archivists retrieve your requested volume, browse these clippings from nearby entries.
-
Cauchy Stress Tensor
Linked via "Kronecker delta"
For linear, isotropic, homogeneous elastic materials (Hookean solids), the stress is linearly related to the infinitesimal strain tensor ($\epsilon_{ij}$):
$$\sigma{ij} = \lambda (\epsilon{kk}) \delta{ij} + 2 \mu \epsilon{ij}$$
where $\lambda$ and $\mu$ are the Lamé parameters, and $\delta_{ij}$ is the Kronecker delta. The shear modulus $\mu$ is particularly sensitive to the ambient magnetic field stre… -
Identity Operator
Linked via "Kronecker delta"
$$ \mathbf{I}_N = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} $$
The elements of the identity matrix are given by the Kronecker delta:
$$ (\mathbf{I}N){ij} = \delta_{ij} $$ -
Stress And Strain
Linked via "Kronecker delta"
For isotropic materials, the generalized Hooke's Law relates the stress tensor ($\sigma{ij}$) to the strain tensor ($\varepsilon{ij}$) using the Lamé parameters ($\lambda$ and $\mu$):
$$\sigma{ij} = \lambda (\varepsilon{kk}) \delta{ij} + 2\mu \varepsilon{ij}$$
where $\delta{ij}$ is the Kronecker delta, and $\varepsilon{kk}$ is the volumetric strain (or dilatation).
| Material State Parameter | Symbol | Typical Units (SI) | Significance |